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BoomerAMGOutline

● Parallelization of AMG

● Coarsening techniques

● Relaxation techniques

● Numerical results

● Conclusions



VEH 4CASC

BoomerAMGAMG has two phases:

● Setup Phase
— Select Coarse “grids,”

— Define interpolation,

— Define restriction and coarse-grid operators
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●   Solve Phase
— Standard multigrid operations, e.g., V-cycle, W-
cycle, FMG, etc
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BoomerAMGWe must parallelize these
steps:

● In The Setup Phase
— Coarse Grid Selection
— Construction of Prolongation operator, P
— Construction of coarse-grid operators by

Galerkin method, RAP, R=P’

● In The Solve Phase
— Residual Calculation
— Relaxation
— Prolongation
— Restriction
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BoomerAMGParallelizing the Solve Phase
● In The Solve Phase

— Residual Calculation
– entails Axpy Matvec: y<-aAx+by.

— Relaxation
–  Jacobi is essentially a Matvec
–  Gauß-Seidel is sequential, but hybrid (or

chaotic) schemes may be employed
— Prolongation

–  requires a Matvec (on a rectangular matrix)
— Restriction

–  requires a MatvecT
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BoomerAMGBasic concept: Smooth
error means “small” residuals

● Error that is slow to converge obeys:
                                              ; hence

● Define: i depends on j  (and  j influences i ) if

● The set of dependencies of i is given by

● Smooth error varies slowly in the direction of
dependence
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BoomerAMGCoarsening techniques

● classical Ruge- Stüben(RS) algorithm

● Cleary-Luby-Jones-Plassman  (CLJP) algorithm

● parallel Ruge-Stüben coarsening techniques

● Falgout-CLJP coarsening
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BoomerAMGChoosing the Coarse Grid

● Two Criteria

— (C1) For each          , each point                should
either be in     or should be strongly connected to
at least one point in

— (C2) C should be a maximal subset with the
property that no two C-points are strongly
connected to each other.

● Satisfying both (C1) and (C2) is sometimes
impossible.  We use (C2) as a guide while enforcing
(C1).

i ∈ F
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BoomerAMG
The AMG coarse-grid selection 
algorithm is inherently sequential
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BoomerAMGA second pass is needed
to enforce (C1)

● First-pass coarsening of 5
point Laplacian , periodic
boundary conditions

● Numerous F-F dependencies
among points not sharing
common C-point

● A second “coloring” pass is
made, changing F-points to C-
points, as needed, to ensure
(C1).
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BoomerAMGParallel Ruge-Stüben
Coarsening

● One approach to coarsening in parallel: perform  the
standard Ruge- Stüben algorithm on each
processor.

● Various treatments possible at processor
boundaries.

● Yields processor dependent coarsenings, and will
not produce the same results for different numbers
of processors.
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BoomerAMGMeasures

● Measure = number of strong influences.

● Possible treatments of the measure for parallel
Ruge-Stüben coarsening:

— Determine measures locally, no communication
between processors  (RS)

— Use the ‘correct’ measures, i.e., take into
account off-processor connections   (RScm)
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BoomerAMGParallel RS coarsening:
boundary treatment:  RS

Perform first and second
passes on each processor

FF ⇔

C

Problem: Leaves
 dependencies without
mutual    -points

P0 P1

P0 P1

Method 1:  Do nothing.
Accept the coarsening
provided by the
independent processors.
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BoomerAMGParallel RStüben coarsening:
boundary treatment  (RS2b)

Perform first pass on each
processor

P1P0

Perform second pass
locally on each processor,
augmented by boundary
points from neighbor

Choices must be made
about how to resolve
conflicting decisions
among processors
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BoomerAMGBoundary conflict resolution

● Methods to resolve conflicting coarsenings at
processor boundaries:

— Largest processor ID wins  (RS3, RS2b)
may violate (C1)

— keep all coarse points (RS3c)
does not violate (C1)

               may yield “too many” coarse-points
               giving high operator complexity
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BoomerAMGParallel RS coarsening:
boundary treatment (RS3)

Perform first and second
pass on each processor

P0 P1

Perform a third pass, (a
second “second pass”),
only on those points
adjacent to processor
boundaries

Choices must be made about
how to resolve conflicting
decisions among processors
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BoomerAMGParallel Ruge-Stüben
 coarsening results

Procs. Setup Op. Cplx
1 20 4.91
2 30 5.25
4 48 5.71
8 79 6.23

16 119 6.75
32 194 6.98
64 360 7.34

128

Procs Solve      C.F.
1 36 0.065
2 40 0.081
4 43 0.111
8 48 0.210

16 389 0.246
32 3433 0.605
64 3352 0.384

128   

7 pt 3D Laplacian
Ruge-Stüben coarsening is
much faster and yields much
better complexities than
Cleary-LJP on the 7-pt
Laplacian

Solution: hybrid coarsening?

Note that the solve times
jump by orders of magnitude
as problem grows. Parallel
Ruge leads to large
“coarsest” grids with direct
solve.
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BoomerAMGA new approach:
the Cleary-LJP algorithm

● The Ruge-Stüben algorithm is inherently sequential.

● A new algorithm was  proposed by Andrew Cleary ,
following parallel-independent-set algorithms
developed by Luby and later by Jones & Plasssman

● Resulting coarsening algorithm (Cleary-LJP) is fully
parallel, independent of the number of processors or
processor topology. Serial prototype early 98,
parallel code late 98.
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BoomerAMGThe C-LJP coarsening is fully
parallel; independent of P
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BoomerAMG7 point 3D Laplacian:
Operator Complexities
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BoomerAMG9 point 2D Laplacian:
Operator complexities
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BoomerAMG27 point 3D Laplacian:
Operator complexities
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BoomerAMG7 point 3D Laplacian:
Setup times
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BoomerAMG9 point 2D Laplacian:
Setup times
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BoomerAMG27 point 3D Laplacian:
Setup times
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BoomerAMGRelaxation techniques

● Jacobi or weighted Jacobi

● Gauß-Seidel

● chaotic Gauß-Seidel
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BoomerAMG7 point 3D Laplacian:
Solve times    chaotic GS
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BoomerAMG9 point 2D Laplacian:
Solve times  chaotic GS
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BoomerAMG27 point 3D Laplacian:
Solve times   chaotic GS
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BoomerAMG7 point 3D Laplacian:
Solve times  Gauß-Seidel
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BoomerAMG27 point 3D Laplacian:
Solve times Gauß-Seidel
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BoomerAMG7 point 3D Laplacian:
As. Conv. Factor   chaotic GS
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BoomerAMG9 point 2D Laplacian:
As. Conv. Factor   chaotic GS
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BoomerAMG7 point 3D Laplacian:
As. Conv. Factor   wt. Jacobi
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BoomerAMG27 point 3D Laplacian:
As. Conv. Factor   chaotic GS
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BoomerAMG27 point 3D Laplacian:
As. Conv. Factor   GS
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BoomerAMG27 point 3D Laplacian:
As. Conv. Factor   wt. Jacobi
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BoomerAMGConclusions & Future Work

● AMG has been parallelized. It shows reasonably good
scalability.

● Testing is still needed to implement the algorithms efficiently;
to determine better ways of treating processor boundaries,
operator complexities, and growing convergence factors.

● Future computer science plans include load balancing and
efficient cache useage.

● Future algorithmic development centers on implementing
“system” solvers and determining MG components using the
finite-element stiffness matrices

● This work was performed under the auspices of the U. S. Department of Energy by

Lawrence Livermore National Laboratory under contract number: W-7405-Eng-48.


